Логотип

Электронные устройства

 материалы в категории

Активный фильтр

Фильтром в электронике называют устройства для передачи электрических сигналов, но пропускающих токи только лишь в определенных диапазонах.

По характеру работы фильтры можно разделить на несколько категорий:
а. Полосовые пропускающие фильтры- фильтр пропускающий сигнал в определенном диапазоне частот
б. Полосовые заградительные фильтры (режекторные)- фильтр препятствующие прохождению сигнала в определенном диапазоне частот.
в. Фильтр нижних частот- фильтр пропускающий сигнал на частоте ниже граничной
г. Фильтр верхних частот- фильтр пропускающий сигнал на частоте выше граничной.

Фильтры могут выполняться как на пассивных так и на активных элементах.
Принято еще одно деление всех фильтров на две категории: фильтры, схема которых содержит катушки индуктивности, и фильтры без индуктивностей, RC-фильтры или резисторно-конденсаторные фильтры

В этой статье мы уделим внимание активным фильтрам

Активные резисторно-конденсаторные фильтры имеют огромное преимущество перед их пассивными аналогами, особенно на частотах ниже 10 кГц. Пассивные фильтры для низких частот должны содержать катушки большой индуктивности и конденсаторы большой емкости. Поэтому они получаются громоздкими, дорогостоящими, а их характеристики оказываются далеко не идеальными.

 


 Большая индуктивность достигается за счет большого числа витков катушки и применения ферромагнитного сердечника. Это лишает ее свойств чистой индуктивности, так как длинный провод многовитковой катушки обладает заметным сопротивлением, а ферромагнитный сердечник подвержен влиянию температуры на его магнитные свойства. Необходимость же использования большой емкости вынуждает применять конденсаторы, обладающие плохой стабильностью, например электролитические. Активные фильтры в значительной мере лишены указанных недостатков.

Схемы дифференциатора и интегратора, построенные с применением операционных усилителей, представляют собой простейшие активные фильтры. При выборе элементов схемы в определенной зависимости от частоты дифференциатор становится фильтром верхних частот, а интегратор - фильтром нижних частот. Далее будут рассмотрены примеры других более сложных и наиболее универсальных фильтров. Большое количество других возможных схем активных фильтров вместе с их детальным математическим анализом можно найти в разных учебниках и пособиях.

Фильтры нижних частот

Если объединить схему инвертирующего усилителя со схемой интегратора, образуется схема фильтра нижних частот первого порядка, которая показана на рис. 1.

 

фильтр нижних частот схема

Такой фильтр представляет собой инвертирующий усилитель, обладающий постоянным коэффициентом усиления в полосе прозрачности от постоянного тока до граничной частоты f0. Частотную характеристику такого фильтра можно охарактеризовать формулой (0 ≤ f ≤ f0).
Видно, что в пределах полосы прозрачности, пока емкостное сопротивление конденсатора достаточно велико, коэффициент усиления схемы совпадает с коэффициентом усиления инвертирующего усилителя:

Граничная частота этого фильтра определяется элементами цепи обратной связи в соответствии с выражением:

 

Амплитудно-частотная характеристика - зависимость амплитуды сигнала на выходе устройства от частоты при постоянной амплитуде на входе этого устройства - представлена на рис.2

В полосе затухания выше граничной частоты f0 усиление уменьшается с интенсивностью 20 дБ/декада (или 6 дБ/октава), что означает уменьшение коэффициента усиления по напряжению в 10 раз при увеличении частоты также в 10 раз или уменьшение коэффициента усиления в два раза при каждом удвоении частоты.

 


 Если такой крутизны наклона амплитудно-частотной характеристики в полосе затухания недостаточно, можно использовать фильтр нижних частот второго порядка, схема которого показана на рис.З.

фильтр нижних частот схема

Коэффициент усиления фильтра нижних частот второго порядка такой же, как у фильтра первого порядка, в связи с тем что суммарное сопротивление резисторов в цепи инверсного входа, как и ранее, выражается значением R1:

Граничная частота при выполнении условия R1C1 = 4R2C2 также выражается прежней формулой:

 

Что касается амплитудно-частотной характеристики этого фильтра, представленной на рис. 4, то она отличается повышенной крутизной наклона, которая составляет 12 дБ/октава.

Таким образом, в полосе затухания при увеличении частоты вдвое напряжение сигнала на выходе фильтра уменьшается в четыре раза.

Фильтры верхних частот

Аналогично построена схема фильтра верхних частот, которая представлена на рис.5. Такой фильтр является инвертирующим усилителем с постоянным коэффициентом усиления в полосе прозрачности от частоты f0 и более. В полосе прозрачности коэффициент усиления схемы такой же, как у инвертирующего усилителя:

Граничная частота f0 на уровне -3 дБ задается входной цепью в соответствии с выражением:

Крутизна наклона амплитудно-частотной характеристики, которая представлена на рис.6, в области граничной частоты составляет 6 дБ/октава.

 

Как и в случае фильтров нижних частот, можно собрать активный фильтр верхних частот второго порядка в целях повышенного подавления сигнала в полосе затухания. Принципиальная схема такого фильтра показана на рис.7.

схема активного фильтра верхних частот второго порядка

 Крутизна наклона амплитудно-частотной характеристики фильтра верхних частот второго порядка в области граничной частоты составляет 12 дБ/октава, а сама характеристика показана на рис.8.

 

Полосовые фильтры


Если объединить активный фильтр нижних частот с активным фильтром верхних частот, то в результате образуется полосовой фильтр, принципиальная схема которого приведена на рис.9.

схема активного полосового фильтра

Эту схему иногда называют избирательным усилителем с ин-тегродифференцирующей обратной связью. Подобно усилителям, содержащим колебательные контуры, полосовой фильтр также имеет амплитудно-частотную характеристику с выраженным максимумом на определенной частоте. Называть такую частоту резонансной нельзя, так как резонанс возможен только в контурах, образованных индуктивностью и емкостью. В других случаях частоту такого максимума обычно называют частотой квазирезонанса. Для рассматриваемого полосового фильтра частота квазирезонанса f0 определяется элементами цепи обратной связи:

 

Амплитудно-частотная характеристика этого полосового фильтра показана на рис. 10.

Максимальный коэффициент усиления на частоте квазирезонанса оказывается равным:

 

Относительная полоса пропускания на уровне -3 дБ:

Принципиальная схема еще одного полосового фильтра приведена на рис. 11.

схема полосового фильтра с двойным Т-фильтром

 

Здесь в цепь отрицательной обратной связи включен двойной Т-фильтр, образованный резисторами R2, R3, R5 и конденсаторами Cl, С2, СЗ.
Как известно, при выполнении следующих условий:

амплитудно-частотная характеристика двойного Т-фильтра содержит квазирезонанс, частота которого равна

 

причем на частоте квазирезонанса коэффициент передачи двойного Т-фильтра равен нулю. Поэтому активный фильтр с двойным Т-фильтром, включенным в цепь отрицательной обратной связи, является полосовым фильтром с максимумом амплитудно-частотной характеристики на частоте квазирезонанса. Три такие характеристики представлены на рис. 12. Характеристики различаются разными сопротивлениями резистора R4: нижняя соответствует R4 = 100 кОм, средняя - R4 = 1 МОм, верхняя - R4 = .

Режекторный фильтр


Тот же самый двойной Т-фильтр может быть включен не в цепь отрицательной обратной связи, как это сделано при создании полосового фильтра, а в цепь входного сигнала. При этом образуется активный режекторный фильтр, схема которого приведена на рис, 13.

схема режекторного фильтра с двойным Т-фильтром

При выполнении прежних условий

 

амплитудно-частотная характеристика активного фильтра, имеющего во входной цепи двойной Т-фильтр, содержит квазирезонанс, частота которого по-прежнему определяется фор мулой (8). Но на частоте квазирезонанса коэффициент усиления этого активного фильтра равен нулю. Амплитудно-частотная характеристика активного фильтра с двойным Т-фильтром во входной цепи показана на рис.14.

Ступенчатый фильтр


Несколько активных фильтров можно соединять последовательно для получения амплитудно-частотной характеристики с повышенной крутизной наклона. Кроме того, соединенные последовательно секции простых фильтров имеют пониженную чувствительность. Это означает, что небольшое отклонение величины одного из компонентов схемы (отклонение сопротивления резистора или емкости конденсатора от нормы) будет приводить к меньшему влиянию на окончательную характеристику фильтра, чем в случае аналогичного сложного фильтра, построенного на одном операционном усилителе.

ступенчатый фильтр

 

На рис. 15 показан ступенчатый фильтр, собранный из трех операционных усилителей. Популярность таких фильтров резко возросла после появления в продаже интегральных микросхем, содержащих несколько операционных усилителей в одном корпусе. Достоинствами этого фильтра являются низкая чувствительность к отклонениям величин компонентов и возможность получения трех выходов: верхних частот Uвых1, полосового Uвых2 и нижних частот UвыхЗ.

Фильтр составлен из суммирующего усилителя DA1 и двух интеграторов DA2, DA3, которые соединены в виде замкнутой петли. Если элементы схемы выбраны согласно условию

то граничная частота оказывается равной

 

Выходы верхних и нижних частот имеют крутизну наклона амплитудно-частотной характеристики, равную 12 дБ/октава, а полосовой выход имеет треугольную характеристику с максимумом на частоте f0 с добротностью Q, которая определяется резисторами установки усиления микросхемы DA1.

Примечание: основная часть материала взята с сайта Приднестровский Радиолюбительский портал

Наш ФОРУМ

Почта сайта