Логотип


Особенности применения оксидных конденсаторов

категория

Компьютер и его доработки

материалы в категории

А. СОРОКИН, г. Радужный Владимирской обл.
Радио, 2003 год, № 1

Для повышения надежности работы компьютера сильно нагревающиеся узлы (процессоры, чипсет, транзисторы блока питания) снабжают теплоотводами, устанавливают дополнительные вентиляторы в системный блок и на винчестеры. Но оказывается, тепловыделяющими элементами являются и оксидные конденсаторы фильтров питания этих узлов. Отчего это происходит и что надо сделать, чтобы предотвратить их нагрев, рассказывается в статье.

В микропропроцессоре к шине питания подключены миллионы транзисторов цифровых узлов, работающих по заданным программами алгоритмам, с суммарным потреблением мощности, достигающим нескольких десятков ватт. В первом приближении их подключения к шине питания являются случайными, позтому в дальнейшем, для упрощения изложения, будем называть их шумами [1].

Длительность фронта изменения состояния ключей в микропроцессоре не превышает 10-8 с, поэтому, несколько занижая ширину спектра генерируемых шумов (токов), можно определить его верхнюю границу frp, как более 100 МГц (frp > 1/τф [2]), а полосу частот — от 0 до более чем 100 МГц. В этом диапазоне сосредоточено 90 % мощности генерируемых шумов. Учитывая случайный (шумоподобный) характер процессов, реально этот диапазон еще шире.

Таким образом, микропроцессоры являются сложными нагрузками для источников питания и генерируют в цепях питания токи широкого спектрального состава (сотни мегагерц) и большой мощности (до 5...20 Вт). Максимальные токи генерируются при 100 %-ной загрузке микропроцессора.

Рассмотрим для примера схему цепи питания ядра микропроцессора (рис. 1) в системной плате BE6-II фирмы Abit (она анонсирована как плата для разгона процессоров). Напряжение питания 2,05 В через дроссель L1 и фильтр из трех оксидных конденсаторов С1—СЗ емкостью 1500 мкФ подается на выводы питания процессора. Конструктивная емкость См имеет малую собственную индуктивность и поэтому хорошо шунтирует высокочастотные (более 100 МГц) составляющие мощности генерируемых шумов.

В качестве С1— СЗ применены высококачественные гелевые оксидные конденсаторы с предельной рабочей температурой +105 °С, способные рассейвать мощность 0,5...5 Вт. Возможно, это и позволило производителям не обращать внимания на режим их работы.

Измерения показали, что в процессе длительной работы компьютера, в котором установлены два корпусных вентилятора (в блоке питания и дополнительный), процессор Celeron с вентилятором Golden Orb и видеокарта с вентилятором, нагрев корпусов упомянутых конденсаторов доходил до +60...80 °С. При высоких температурах наружного воздуха последовательно вышли из строя два из трех конденсаторов фильтра: вначале произошло механическое разрушение корпуса одного из них, после чего компьютер начал периодически "зависать" во время работы, затем то же самое случилось со вторым конденсатором и система начала отказывать уже на этапе обработки BIOS. Причина "зависаний" — появление в цепях питания выбросов напряжения, соизмеримых с амплитудой импульсов управляющих сигналов. Такие выбросы проникают в цепи управления или данных и нарушают работу процессора и целостность данных.

По температуре корпусов оксидных конденсаторов можно заключить, что они рассеивают мощность около 3...5 Вт В чем же причины нагрева? Как известно, нагрев оксидного конденсатора определяется мощностью, выделяемой в его объеме, т. е. потерями в диэлектрике и металлических элементах. Потери описываются тангенсом угла потерь: tg δс = Рп/Р = (Рм + Рд)/Р = tg δМ + tg δД, где Рп — мощность потерь; Рм — мощность потерь в металле; Рд — мощность потерь в диэлектрике; tg δМ и tg δД — тангенс угла потерь для металла и диэлектрика соответственно. Типовое значение tg δС оксидного конденсатора — (1000...2000)-10-4 на частоте 50 Гц. При таких его значениях от 10 до 20 % мощности низкочастотных токов переходят в тепло, а учитывая, что спектр фильтруемых токов (напряжений) простирается до десятков мегагерц и tg δС увеличивается с ростом частоты (tg δМ = Rп2πfС), в тепло переходит более 80% энергии шума, генерируемой процессором и фильтруемой цепями питания.

Как влияет на работу оксидного конденсатора повышение температуры?

Сопротивление изоляции с ростом температуры на 10 °С падает в 1,26.. .2 раза, а при повышении температуры до предельной +105 °С — в 7...350 раз (минимальные значения соответствуют неорганическим диэлектрикам, а максимальные — органическим). Электрическая прочность конденсатора снижается в три раза при повышении частоты приложенного напряжения в 10 раз (при номинальной мощности потерь) [3].

Все сказанное выше говорит о том, что использовать оксидные конденсаторы в цепях питания процессоров без принятия специальных мер недопустимо. Несоблюдение этого условия приводит к снижению надежности системной платы и может спровоцировать их выход из строя даже в рабочем интервале температур.

Напрашивается простое решение: для предотвращения проникания в оксидные конденсаторы высокочастотных составляющих (вплоть до десятков мегагерц) установить в непосредственной близости от выводов процессора бескорпусный керамический конденсатор емкостью 0,033 мкФ, а в качестве преграды низкочастотным составляющим (до сотен килогерц) включить керамический конденсатор емкостью 3,3...4,7 мкФ. Из-за малого tg δС таких конденсаторов шунтированная энергия не переходит в тепло. Суммарная реактивная мощность этих конденсаторов — 30 ВАр.

Измененная схема цепи питания ядра микропроцессора показана на рис. 2. Доработка была выполнена на данной плате, что привело к снижению температуры корпусов оксидных конденсаторов до +20...30°С. Плата успешно выдержала испытания в жаркий период лета 2002 г. при температуре воздуха в помещении +40...50 °С. Кроме того, снизился уровень излучаемых компьютером помех.

Подобной доработке целесообразно подвергнуть системные платы компьютеров, используемых в качестве серверов, других компьютеров, работающих со 100 %-ной нагрузкой (например, в системах распределенных вычислений), а также видеокарты, т. е. все узлы, в которых процессоры работают с предельной нагрузкой. Полезна она и в компьютерах, используемых не столь интенсивно: снижение тепловыделения в системном блоке на 10...25 Вт благоприятно скажется на надежности работы системы.

ЛИТЕРАТУРА

  1. Ott Henry W. Noise reduction techniques in electronic system. — John Wiley & Sons, N-Y 1976.
  2. Гоноровский И. С. Радиотехнические цепи и сигналы. 4.1. — М.: Советское радио, 1967.
  3. Дулин В. Ж., Жук М. С. Справочник по элементам радиоэлектронных устройств. — М.: Энергия, 1977.

Почта сайта