Логотип


Ультразвуковой датчик движения

категория

Самодельное охранное оборудование

материалы в категории

В. ГУСЬКОВ, В. СВИРИДОВ, г. Самара
Радио, 2002 год, № 8

Работа многих систем охранной сигнализации основана на очень простом принципе: в охраняемом помещении в неурочное время не должно быть никакого движения. Чтобы обнаружить его, помещение "заполняют" излучением — чаще всего радио- или акустическим. Многократно отразившись от стен и находящихся в помещении предметов, лучи достигают приемника. Любое изменение обстановки вызовет модуляцию принятого сигнала, что и зафиксирует датчик.
Акустические (ультразвуковые) датчики такого типа имеют довольно существенное преимущество над использующими радиоволны — ничего не излучая в "эфир", они не требуют оформления разрешений на установку и эксплуатацию. Читателям предлагается описание одного из подобных датчиков, сравнительно простого и достаточно чувствительного для охраны помещения площадью до 20 м2.

В отличие от акустических датчиков, описания которых были ранее опубликованы в журнале "Радио" [1 — 3], предлагаемый действует по несколько иному принципу, защищенному патентом [4].

Основные технические характеристики

Частота звука, кГц ...............10
Излучаемая акустическая
мощность, мВт, не более ........5
Напряжение питания (постоянное), В ................10...16
Потребляемая мощность
в дежурном режиме, мВт......120
Габариты, мм ............150x50x30

Выходная цепь — "сухие" контакты реле, кроме того, о срабатывании сигнализирует зажигание светодиода.

Схема прибора

Для увеличения кликните по изображению (откроется в новом окне)

К входу усилителя на ОУ DA1.1 и DA1.2 подключен пьезоэлектрический микрофон ВМ1, к выходу — пьезоэлектрический звукоизлучатель BF1. В результате усилитель охвачен акустической обратной связью через контролируемый газовый объем, за счет которой в системе возникают автоколебания. Их частота зависит от АЧХ и ФЧХ элементов (в первую очередь микрофона и излучателя) и от акустических свойств охраняемого помещения. Амплитуду колебаний поддерживает постоянной система АРУ из детектора на диодах VD2, VD3 и усилителя на одном из элементов микросхемы DA2 К176ЛП1. Регулирующими элементами АРУ служат имеющиеся в той же микросхеме отдельные полевые транзисторы, участки сток-исток которых включены в цепи местной обратной связи каскадов на ОУ DA1.1 и DA1.2.

Если в чувствительной зоне датчика движется какой-либо объект (нарушитель), изменяется затухание и задержка отраженных от него акустических волн, что приводит к изменению амплитуды генерируемых датчиком колебаний. Цепями R7C10 и R6C1C6 заданы частотные характеристики контура АРУ, необходимые для устойчивой работы датчика в различных условиях при эффективном слежении за изменениями амплитуды сигнала.

Переменная составляющая напряжения на выходе усилителя АРУ, вызванная движением, поступает на вход компаратора DA1.3. Порог срабатывания устанавливают подстроечным резистором R8. К выходу компаратора через буферный усилитель из двух соединенных параллельно элементов микросхемы DD1 подключен светодиод HL1, вспышками свидетельствующий о движении в охраняемом помещении.

Кроме того, сигнал с выходов элементов DD1.1 и DD1.2 запускает одновибратор на элементах DD1.3 и DD1.4, импульсы которого открывают ключ на транзисторе VT2, заставляя сработать реле К1. Одновибратор генерирует импульсы лишь при условии, что на входе 13 элемента DD1.4 — высокий логический уровень. Благодаря цепи R14C16 этот уровень будет достигнут лишь через некоторое время после включения питания, давая датчику возможность войти в установившийся режим, не подавая сигналов тревоги.

Если тревожные импульсы повторяются слишком часто, конденсатор С16 разряжается через резистор R16 и диод VD5, что блокирует запуск одновибрато-ра и предотвращает лишние срабатывания реле К1. Таким образом достигается значительная экономия ресурса реле и потребляемой мощности.

Стабилизатор напряжения питания построен по несколько необычной схеме с регулирующим транзистором VT1 в минусовой цепи, что позволило уменьшить число деталей в приборе. Диод VD1 защищает от неправильной полярности подключения к источнику питания.

Внешний вид датчика показан на рис. 2.

Он собран на печатной плате, помещенной в корпус из изоляционного материала, например, полистирола. На верхней крышке корпуса установлены микрофон ВМ1 и излучатель BF1, акустически изолированные от корпуса и друг от друга с помощью поролоновых шайб толщиной 3 мм. Чем больше расстояние между излучателем и микрофоном, тем выше чувствительность датчика. В авторской конструкции оно составило 100 мм. В той же крышке предусмотрено отверстие для светодиода HL1.

В качестве BF1 и ВМ1 применены одинаковые пьезопреобразователи ВУТА-1, выпускаемые предприятием «Альфа-Оптим» (г. Волгоград). Замена их на более высокочастотные и чувствительные желательна, однако это потребует некоторых доработок датчика, изменяющих частотные характеристики контура автогенерации.

В датчике установлены оксидные конденсаторы К50-35, керамические К10-17, резисторы МЛТ-0,125, реле РЭС55А (паспорт РС4.569.600-01). Транзисторы КТ361Б можно заменить на КТ361Г, КТ361Е и другие маломощные кремниевые структуры р-п-р.

При регулировке чувствительности датчика (подстроечным резистором R8) иногда приходится для достижения нужного результата поменять местами выводы 12 и 13 элемента DA1.3.

ЛИТЕРАТУРА
1. Вилл В. Ультразвуковой автосторож. — Радио, 1996, № 1, с. 52—54.
2. Волков А. УЗ датчик охранной сигнализации. — Радио, 1996, № 5, с. 54—56.
3. Койнов А. Ультразвуковое охранное устройство. — Радио, 1998, № 7, с. 42.
4. Гуськов В., Гуськова М. Способ для определения изменения состояния объема, заполненного упругой средой, и устройства (варианты) для его осуществления. — Патент РФ № 2104494 МКИ 6G 01D1/18, заявлено 26 января 1995 г., опубликовано 10 февраля 1998 г.

Почта сайта